

Documentation of prance 0.22.11.4.1.dev3+g225635a

Swagger/OpenAPI 2.0 Parser for Python

[image: License] [https://pypi.python.org/pypi/prance/] [image: PyPI] [https://pypi.python.org/pypi/prance/] [image: Python Versions] [https://pypi.python.org/pypi/prance/] [image: Package Format] [https://pypi.python.org/pypi/prance/] [image: Package Status] [https://pypi.python.org/pypi/prance/]

[image: Logo]

Prance provides parsers for Swagger/OpenAPI
2.0 and 3.0 [http://swagger.io/specification/] API specifications in Python.
It uses openapi_spec_validator [https://github.com/p1c2u/openapi-spec-validator],
swagger_spec_validator [https://github.com/Yelp/swagger_spec_validator] or
flex [https://github.com/pipermerriam/flex]
to validate specifications, but additionally resolves JSON
references [https://tools.ietf.org/html/draft-pbryan-zyp-json-ref-03]
in accordance with the OpenAPI spec.

Mostly the latter involves handling non-URI references; OpenAPI is fine
with providing relative file paths, whereas JSON references require URIs
at this point in time.

Usage

Installation

Prance is available from PyPI, and can be installed via pip:

$ pip install prance

Note that this will install the code, but additional subpackages must be specified
to unlock various pieces of functionality. At minimum, a parsing backend must be
installed. For the CLI functionality, you need further dependencies.

The recommended installation installs the CLI, uses ICU and installs one validation
backend:

$ pip install prance[osv,icu,cli]

Make sure you have ICU Unicode Library [http://site.icu-project.org/home] installed,
as well as Python dev library before running the commands above. If not, use the
following commands:

$ sudo apt-get install libicu-dev python3-dev # Ubuntu/Debian
$ sudo dnf install libicu-devel python3-devel # Fedora

Command Line Interface

After installing prance, a CLI is available for validating (and resolving
external references in) specs:

Validates with resolving
$ prance validate path/to/swagger.yml

Validates without resolving
$ prance validate --no-resolve path/to/swagger.yml

Fetch URL, validate and resolve.
$ prance validate http://petstore.swagger.io/v2/swagger.json
Processing "http://petstore.swagger.io/v2/swagger.json"...
 -> Resolving external references.
Validates OK as Swagger/OpenAPI 2.0!

Validation is not the only feature of prance. One of the side effects of
resolving is that from a spec with references, one can create a fully resolved
output spec. In the past, this was done via options to the validate command,
but now there’s a specific command just for this purpose:

Compile spec
$ prance compile path/to/input.yml path/to/output.yml

Lastly, with the arrival of OpenAPI 3.0.0, it becomes useful for tooling to
convert older specs to the new standard. Instead of re-inventing the wheel,
prance just provides a CLI command for passing specs to the web API of
swagger2openapi [https://github.com/Mermade/swagger2openapi] - a working
internet connection is therefore required for this command:

Convert spec
$ prance convert path/to/swagger.yml path/to/openapi.yml

Code

Most likely you have spec file and want to parse it:

from prance import ResolvingParser
parser = ResolvingParser('path/to/my/swagger.yaml')
parser.specification # contains fully resolved specs as a dict

Prance also includes a non-resolving parser that does not follow JSON
references, in case you prefer that.

from prance import BaseParser
parser = BaseParser('path/to/my/swagger.yaml')
parser.specification # contains specs as a dict still containing JSON references

On Windows, the code reacts correctly if you pass posix-like paths
(/c:/swagger) or if the path is relative. If you pass absolute
windows path (like c:\swagger.yaml), you can use
prance.util.fs.abspath to convert them.

URLs can also be parsed:

parser = ResolvingParser('http://petstore.swagger.io/v2/swagger.json')

Largely, that’s it. There is a whole slew of utility code that you may
or may not find useful, too. Look at the full documentation [https://prance.readthedocs.io/en/latest/#api-modules] for details.

Compatibility

Python Versions

Version 0.16.2 is the last version supporting Python 2. It was released on
Nov 12th, 2019. Python 2 reaches end of life at the end of 2019. If you wish
for updates to the Python 2 supported packages, please contact the maintainer
directly.

Until fairly recently, we also tested with PyPy [https://www.pypy.org/].
Unfortunately, Travis isn’t very good at supporting this. So in the absence
of spare time, they’re disabled. Issue 50 [https://github.com/jfinkhaeuser/prance/issues/50]
tracks progress on that.

Similarly, but less critically, Python 3.4 is no longer receiving a lot of
love from CI vendors, so automated builds on that version are no longer
supported.

Backends

Different validation backends support different features.

	Backend

	Python Version

	OpenAPI Version

	Strict Mode

	Notes

	Available From

	Link

	swagger-spec-validator

	2 and 3

	2.0 only

	yes

	Slow; does not accept integer keys (see strict mode).

	prance 0.1

	swagger_spec_validator [https://github.com/Yelp/swagger_spec_validator]

	flex

	2 and 3

	2.0 only

	n/a

	Fastest; unfortunately deprecated.

	prance 0.8

	flex [https://github.com/pipermerriam/flex]

	openapi-spec-validator

	2 and 3

	2.0 and 3.0

	yes

	Slow; does not accept integer keys (see strict mode).

	prance 0.11

	openapi_spec_validator [https://github.com/p1c2u/openapi-spec-validator]

You can select the backend in the constructor of the parser(s):

parser = ResolvingParser('http://petstore.swagger.io/v2/swagger.json', backend = 'openapi-spec-validator')

No backend is included in the dependencies; they are detected at run-time. If you install them,
they can be used:

$ pip install openapi-spec-validator
$ pip install prance
$ prance validate --backend=openapi-spec-validator path/to/spec.yml

A note on flex usage: While flex is the fastest validation backend, unfortunately it is no longer
maintained and there are issues with its dependencies. For one thing, it depends on a version of PyYAML
that contains security flaws. For another, it depends explicitly on older versions of click.

If you use the flex subpackage, therefore, you do so at your own risk.

Compatibility

See COMPATIBILITY.rst [https://github.com/jfinkhaeuser/prance/blob/master/COMPATIBILITY.rst]
for a list of known issues.

Partial Reference Resolution

It’s possible to instruct the parser to only resolve some kinds of references.
This allows e.g. resolving references from external URLs, whilst keeping local
references (i.e. to local files, or file internal) intact.

from prance import ResolvingParser
from prance.util.resolver import RESOLVE_HTTP

parser = ResolvingParser('/path/to/spec', resolve_types = RESOLVE_HTTP)

Multiple types can be specified by OR-ing constants together:

from prance import ResolvingParser
from prance.util.resolver import RESOLVE_HTTP, RESOLVE_FILES

parser = ResolvingParser('/path/to/spec', resolve_types = RESOLVE_HTTP | RESOLVE_FILES)

Extensions

Prance includes the ability to reference outside swagger definitions
in outside Python packages. Such a package must already be importable
(i.e. installed), and be accessible via the
ResourceManager API [https://setuptools.readthedocs.io/en/latest/pkg_resources.html#resourcemanager-api]
(some more info here [https://setuptools.readthedocs.io/en/latest/setuptools.html#including-data-files]).

For example, you might create a package common_swag with the file
base.yaml containing the definition

definitions:
 Severity:
 type: string
 enum:
 - INFO
 - WARN
 - ERROR
 - FATAL

In the setup.py for common_swag you would add lines such as

packages=find_packages('src'),
package_dir={'': 'src'},
package_data={
 '': '*.yaml'
}

Then, having installed common_swag into some application, you could
now write

definitions:
 Message:
 type: object
 properties:
 severity:
 $ref: 'python://common_swag/base.yaml#/definitions/Severity'
 code:
 type: string
 summary:
 type: string
 description:
 type: string
 required:
 - severity
 - summary

Contributing

See CONTRIBUTING.md [https://github.com/jfinkhaeuser/prance/blob/master/CONTRIBUTING.md] for details.

Professional support is available through finkhaeuser consulting [https://finkhaeuser.de].

License

Licensed under MIT. See the LICENSE.txt [https://github.com/RonnyPfannschmidt/prance/blob/master/LICENSE.txt] file for details.

“Prancing unicorn” logo image Copyright (c) Jens Finkhaeuser.
Made by Moreven B [http://morevenb.com/]. Use of the logo is permitted under
the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license [https://creativecommons.org/licenses/by-nc-sa/4.0/].

API/Modules

	prance

	Prance implements parsers for Swagger/OpenAPI 2.0 and 3.0.0 API specs.

	prance.mixins

	Defines Mixins for parsers.

	prance.convert

	Functionality for converting from Swagger/OpenAPI 2.0 to OpenAPI 3.0.0.

	prance.util.formats

	This submodule contains file format related utility code for Prance.

	prance.util.fs

	This submodule contains file system utilities for Prance.

	prance.util.iterators

	This submodule contains specialty iterators over specs.

	prance.util.resolver

	This submodule contains a JSON inlining reference resolver.

	prance.util.url

	This submodule contains code for fetching/parsing URLs.

	prance.util.exceptions

	This submodule contains helpers for exception handling.

	prance.util.path

	This module contains code for accessing values in nested data structures.

Changes

Prance 0.22.11.04.0

Features

	consolidate and unify openapi-spec-validator api usage (#132)

	drop dead pythons and upgrade builds for python 3.7 - 3.10 (#137)

	migrate from distutils.version to packaging.version (#138)

Prance 0.21.8.0 (2021-08-06)

Features

	Initial translating parser to inline other specs to new names. (#101)

	replace pyyaml with ruamel.yaml for modern yaml support (#110)

	Adopt black as code formatter. (#113)

Bugfixes

	RefResolver will again accept and if instructed resolve references using the “python” URL scheme. (#104)

Prance 0.21.2 (2021-05-18)

Bugfixes

	widen chardet pin to ease dependency hell for when others haven’t updated to >4 (#98)

v0.21.1 (2021-05-18)

	quickfix for a missed rst issue in readme

v0.21.0 (2021-05-18)

Features

	Implement initial part of maintainer switch (#93)

	@RonnyPfannschmidt is the new maintainer, plans to move to jazzband

	License is now MIT after coordination with Jens

	begin to use pre-commit + pyupgrade

	set up for setuptools_scm as bumpversion breaks with normalized configfiles

	github actions

	modernize setup.py/cfg

	return to towncrier default templates

v0.20.2

	#83: Properly propagate strict mode down to nested resolvers.

v0.20.1

Bugfix release:

	#85: Update dependencies, in particular chardet

	Miscellaneous: #86

v0.20.0

	#77: Translate local references in external files by injecting them into the main
specification.

	#78: Fix issue in RESOLVE_INTERNAL handling

v0.19.0

	#72: Fix behaviour when attempting to resolve nonexistent local references: raise
ResolutionError instead of what the OS provides.

	#69: Improve documentation with regards to JSON Schema and OpenAPI interoperability;
some things are just not very well defined, and we make some strict assumptions
in prance.

	Miscellaneous: #71

v0.18.3

Bugfix release:

	#67: fix syntax warning.

	#69: when resolving references, if URL parsing fails, provide context on
which URL was being parsed in error message.

v0.18.2

Bugfix release:

	#65: fix error in resolving files only with ResolvingParser.

v0.18.1

Maintenance release, focusing on change requests from users.

	#23: Add support for partial resolution, i.e. resolving only internal references,
local files, HTTP URLs, or any combination thereof.

	#36: Improve error handling by mentioning strict mode when openapi-spec-validator
raises TypeError with very little context.

	#46: Reduce reliance on network in tests. Tests that require a network connection
can now be skipped via “-m ‘not requires_network’”. Other tests have mocked
connections.

	#55: RefResolver could set recursion limits, but the ResolvingParser did not
pass related options on to the resolver. Fixed that. Also create & use
reference cache in ResolvingParser.

	#60: Improve output when resolving references, by indicating the type of problem
(missing key, index out of bounds) in the object or sequence where the error
occurred.

v0.17.0

	#51: Try a lot more bytes when detecting file encoding. The new value is meant to
be a multiple of sector/cluster size that’s still reasonable on most OSes and
volumes.

	#49: Remove Python 2.7 from supported/built versions. The CI vendors also don’t love
3.4 any longer. Instead, we’ve added 3.7 and 3.8 where available.

	Miscellaneous: #53

v0.16.2

	#47: Fix deprecation warning by always preferring collections.abc over collections.

v0.16.1

	#44: Add changelog generation via towncrier [https://town-crier.readthedocs.io/en/latest/]

prance

Prance implements parsers for Swagger/OpenAPI 2.0 and 3.0.0 API specs.

See https://openapis.org/ for details on the specification.

Included is a BaseParser that reads and validates swagger specs, and a
ResolvingParser that additionally resolves any $ref references.

Exceptions

	
exception prance.ValidationError

	Bases: Exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

Classes

	
class prance.BaseParser(url=None, spec_string=None, lazy=False, **kwargs)

	Bases: YAMLMixin, JSONMixin

The BaseParser loads, parses and validates OpenAPI 2.0 and 3.0.0 specs.

Uses YAMLMixin and JSONMixin for additional
functionality.

	
json()

	Return a JSON representation of the specifications.

	Returns

	JSON representation.

	Return type

	dict

	
parse()

	When the BaseParser was lazily created, load and parse now.

You can use this function to re-use an existing parser for parsing
multiple files by setting its url property and then invoking this
function.

	
specs_updated()

	Test if self.specficiation changed.

	Returns

	Whether the specs changed.

	Return type

	bool

	
yaml()

	Return a YAML representation of the specifications.

	Returns

	YAML representation.

	Return type

	dict

	
BACKENDS = {'flex': ((2,), '_validate_flex'), 'openapi-spec-validator': ((2, 3), '_validate_openapi_spec_validator'), 'swagger-spec-validator': ((2,), '_validate_swagger_spec_validator')}

	

	
SPEC_VERSION_2_PREFIX = 'Swagger/OpenAPI'

	

	
SPEC_VERSION_3_PREFIX = 'OpenAPI'

	

	
class prance.ResolvingParser(url=None, spec_string=None, lazy=False, **kwargs)

	Bases: BaseParser

The ResolvingParser extends BaseParser with resolving references by inlining.

	
json()

	Return a JSON representation of the specifications.

	Returns

	JSON representation.

	Return type

	dict

	
parse()

	When the BaseParser was lazily created, load and parse now.

You can use this function to re-use an existing parser for parsing
multiple files by setting its url property and then invoking this
function.

	
specs_updated()

	Test if self.specficiation changed.

	Returns

	Whether the specs changed.

	Return type

	bool

	
yaml()

	Return a YAML representation of the specifications.

	Returns

	YAML representation.

	Return type

	dict

	
BACKENDS = {'flex': ((2,), '_validate_flex'), 'openapi-spec-validator': ((2, 3), '_validate_openapi_spec_validator'), 'swagger-spec-validator': ((2,), '_validate_swagger_spec_validator')}

	

	
SPEC_VERSION_2_PREFIX = 'Swagger/OpenAPI'

	

	
SPEC_VERSION_3_PREFIX = 'OpenAPI'

	

prance.mixins

Defines Mixins for parsers.

The Mixins are here mostly for separation of concerns.

Classes

	
class prance.mixins.CacheSpecsMixin

	Bases: object

CacheSpecsMixin helps determine if self.specification changed.

It does so by caching a shallow copy on-demand.

	
specs_updated()

	Test if self.specficiation changed.

	Returns

	Whether the specs changed.

	Return type

	bool

	
class prance.mixins.JSONMixin

	Bases: CacheSpecsMixin

JSONMixin returns a JSON representation of the specification.

It uses CacheSpecsMixin for lazy evaluation.

	
json()

	Return a JSON representation of the specifications.

	Returns

	JSON representation.

	Return type

	dict

	
specs_updated()

	Test if self.specficiation changed.

	Returns

	Whether the specs changed.

	Return type

	bool

	
class prance.mixins.YAMLMixin

	Bases: CacheSpecsMixin

YAMLMixin returns a YAML representation of the specification.

It uses CacheSpecsMixin for lazy evaluation.

	
specs_updated()

	Test if self.specficiation changed.

	Returns

	Whether the specs changed.

	Return type

	bool

	
yaml()

	Return a YAML representation of the specifications.

	Returns

	YAML representation.

	Return type

	dict

prance.convert

Functionality for converting from Swagger/OpenAPI 2.0 to OpenAPI 3.0.0.

The functions use https://mermade.org.uk/ APIs for conversion.

Exceptions

	
exception prance.convert.ConversionError

	Bases: ValueError

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

Functions

	
prance.convert.convert_spec(parser_or_spec, parser_klass=None, *args, **kwargs)

	Convert an already parsed spec to OpenAPI 3.x.y.

Returns a new parser instance with the parsed specs, if possible.

The first parameter is either a parsed OpenAPI 2.0 spec, or a parser
instance, i.e. something derived from prance.BaseParser. If a parser,
the returned parser’s options are taken from this source parser.

If the first parameter is a parsed spec, you must specify the class
of parser to instantiate. You can specify other options as key word
arguments. See the parser klass for details.

Any key word arguments specified here also override options from a
source parser.

This parametrization may seem a little convoluted. What it does, though,
is allow maximum flexibility. You can create parsed (but unvalidated)
OpenAPI 3.0 specs even if you only have backends that support version 2.0.
You can pass the source parser, and the lazy flag, and that’s it. If your
version 2.0 specs were valid, there’s a good chance your converted 3.0
specs are also valid.

	Parameters

	
	parser_or_spec (mixed) – A dict (spec) or an instance of BaseParser

	parser_klass (type) – [optional] A parser class to instantiate for
the result.

	Returns

	A parser instance.

	Return type

	BaseParser or derived.

	
prance.convert.convert_str(spec_str, filename=None, **kwargs)

	Convert the serialized spec.

We parse the spec first to ensure there is no parse error, then
send it off to the API for conversion.

	Parameters

	
	spec_str (str) – The specifications as string.

	filename (str) – [optional] Filename to determine the format from.

	content_type (str) – [optional] Content type to determine the format
from.

	Returns

	The converted spec and content type.

	Return type

	tuple

	Raises

	
	ParseError – when parsing fails.

	ConversionError – when conversion fails.

	
prance.convert.convert_url(url, cache={})

	Fetch a URL, and try to convert it to OpenAPI 3.x.y.

	Parameters

	url (str) – The URL to fetch.

	Returns

	The converted spec and content type.

	Return type

	tuple

	Raises

	
	ParseError – when parsing fails.

	ConversionError – when conversion fails.

prance.util.formats

This submodule contains file format related utility code for Prance.

Exceptions

	
exception prance.util.formats.ParseError

	Bases: ValueError

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

Functions

	
prance.util.formats.format_info(format_name)

	Return content type and extension for a supported format.

Valid formats are YAML or JSON.

	Parameters

	format_name (str) – The name of the format.

	Returns

	The preferred content type and file name extension, or
(None, None) if the format name is not supported.

	Return type

	tuple

	
prance.util.formats.parse_spec(spec_str, filename=None, **kwargs)

	Return a parsed dict of the given spec string.

The function exists for legacy reasons and just wraps parse_spec_details,
returning only the parsed specs.

	Parameters

	
	spec_str (str) – The specifications as string.

	filename (str) – [optional] Filename to determine the format from.

	content_type (str) – [optional] Content type to determine the format
from.

	Returns

	The specifications.

	Return type

	dict

	Raises

	ParseError – when parsing fails.

	
prance.util.formats.parse_spec_details(spec_str, filename=None, **kwargs)

	Return a parsed dict of the given spec string.

Also returned are the detected mime type and file name extension.

The default format is assumed to be JSON, but if you provide a filename,
its extension is used to determine whether YAML or JSON should be
parsed.

	Parameters

	
	spec_str (str) – The specifications as string.

	filename (str) – [optional] Filename to determine the format from.

	content_type (str) – [optional] Content type to determine the format
from.

	Returns

	The specifications, mime type, and extension.

	Return type

	tuple

	Raises

	ParseError – when parsing fails.

	
prance.util.formats.serialize_spec(specs, filename=None, **kwargs)

	Return a serialized version of the given spec.

The default format is assumed to be JSON, but if you provide a filename,
its extension is used to determine whether YAML or JSON should be
parsed.

	Parameters

	
	specs (dict) – The specifications as dict.

	filename (str) – [optional] Filename to determine the format from.

	content_type (str) – [optional] Content type to determine the format
from.

	Returns

	The serialized specifications.

	Return type

	str

prance.util.fs

This submodule contains file system utilities for Prance.

Functions

	
prance.util.fs.abspath(filename, relative_to=None)

	Return the absolute path of a file relative to a reference file.

If no reference file is given, this function works identical to
canonical_filename.

	Parameters

	
	filename (str) – The filename to make absolute.

	relative_to (str) – [optional] the reference file name.

	Returns

	The absolute path

	Return type

	str

	
prance.util.fs.canonical_filename(filename)

	Return the canonical version of a file name.

The canonical version is defined as the absolute path, and all file system
links dereferenced.

	Parameters

	filename (str) – The filename to make canonical.

	Returns

	The canonical filename.

	Return type

	str

	
prance.util.fs.detect_encoding(filename, default_to_utf8=True, **kwargs)

	Detect the named file’s character encoding.

If the first parts of the file appear to be ASCII, this function returns
‘UTF-8’, as that’s a safe superset of ASCII. This can be switched off by
changing the default_to_utf8 parameter.

	Parameters

	
	filename (str) – The name of the file to detect the encoding of.

	default_to_utf8 (bool) – Defaults to True. Set to False to disable
treating ASCII files as UTF-8.

	read_all (bool) – Keyword argument; if True, reads the entire file
for encoding detection.

	Returns

	The file encoding.

	Return type

	str

	
prance.util.fs.from_posix(fname)

	Convert a path from posix-like, to the platform format.

	Parameters

	fname (str) – The filename in posix-like format.

	Returns

	The filename in the format of the platform.

	Return type

	str

	
prance.util.fs.is_pathname_valid(pathname)

	Test whether a path name is valid.

	Returns

	True if the passed pathname is valid on the current OS, False
otherwise.

	Return type

	bool

	
prance.util.fs.read_file(filename, encoding=None)

	Read and decode a file, taking BOMs into account.

	Parameters

	
	filename (str) – The name of the file to read.

	encoding (str) – The encoding to use. If not given, detect_encoding is
used to determine the encoding.

	Returns

	The file contents.

	Return type

	unicode string

	
prance.util.fs.to_posix(fname)

	Convert a path to posix-like format.

	Parameters

	fname (str) – The filename to convert to posix format.

	Returns

	The filename in posix-like format.

	Return type

	str

	
prance.util.fs.write_file(filename, contents, encoding=None)

	Write a file with the given encoding.

The default encoding is ‘utf-8’. It’s recommended not to change that for
JSON or YAML output.

	Parameters

	
	filename (str) – The name of the file to read.

	contents (str) – The file contents to write.

	encoding (str) – The encoding to use. If not given, detect_encoding is
used to determine the encoding.

prance.util.iterators

This submodule contains specialty iterators over specs.

Functions

	
prance.util.iterators.item_iterator(value, path=())

	Return item iterator over the a nested dict- or list-like object.

Returns each item value as the second item to unpack, and a tuple path to the
item as the first value - in that, it behaves much like viewitems(). For list
like values, the path is made up of numeric indices.

Given a spec such as this:

spec = {
 'foo': 42,
 'bar': {
 'some': 'dict',
 },
 'baz': [
 { 1: 2 },
 { 3: 4 },
]
}

Here, (parts of) the yielded values would be:

	item

	path

	[…]

	(‘baz’,)

	{ 1: 2 }

	(‘baz’, 0)

	2

	(‘baz’, 0, 1)

	Parameters

	value (dict/list) – The specifications to iterate over.

	Returns

	An iterator over all items in the value.

	Return type

	iterator

	
prance.util.iterators.reference_iterator(specs, path=())

	Iterate through the given specs, returning only references.

	The iterator returns three values:
	
	The key, mimicking the behaviour of other iterators, although
it will always equal ‘$ref’

	The value

	The path to the item. This is a tuple of all the item’s ancestors,
in sequence, so that you can reasonably easily find the containing
item. It does not include the final ‘$ref’ key.

	Parameters

	specs (dict) – The specifications to iterate over.

	Returns

	An iterator over all references in the specs.

	Return type

	iterator

prance.util.resolver

This submodule contains a JSON inlining reference resolver.

Classes

	
class prance.util.resolver.RefResolver(specs, url=None, **options)

	Bases: object

Resolve JSON pointers/references in a spec by inlining.

	
resolve_references()

	Resolve JSON pointers/references in the spec.

Functions

	
prance.util.resolver.default_reclimit_handler(limit, parsed_url, recursions=())

	Raise prance.util.url.ResolutionError.

prance.util.url

This submodule contains code for fetching/parsing URLs.

Exceptions

	
exception prance.util.url.ResolutionError

	Bases: LookupError

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

Functions

	
prance.util.url.absurl(url, relative_to=None)

	Turn relative file URLs into absolute file URLs.

This is necessary, because while JSON pointers do not allow relative file
URLs, Swagger/OpenAPI explicitly does. We need to make relative paths
absolute before passing them off to jsonschema for verification.

Non-file URLs are left untouched. URLs without scheme are assumed to be file
URLs.

	Parameters

	
	url (str/tuple) – The input URL.

	relative_to (str/tuple) – [optional] The URL to which the input URL is
relative.

	Returns

	The output URL, parsed into components.

	Return type

	tuple

	
prance.util.url.fetch_url(url, cache={}, encoding=None, strict=True)

	Fetch the URL and parse the contents.

Same as fetch_url_text(), but also parses the content and only
returns the parse results.

	Parameters

	
	url (tuple) – The url, parsed as returned by absurl above.

	cache (Mapping) – An optional cache. If the URL can be found in the
cache, return the cache contents.

	encoding (str) – Provide an encoding for local URLs to override
encoding detection, if desired. Defaults to None.

	Returns

	The parsed file.

	Return type

	dict

	
prance.util.url.fetch_url_text(url, cache={}, encoding=None)

	Fetch the URL.

If the URL is a file URL, the format used for parsing depends on the file
extension. Otherwise, YAML is assumed.

The URL may also use the python scheme. In this scheme, the netloc part
refers to an importable python package, and the path part to a path relative
to the package path, e.g. python://some_package/path/to/file.yaml.

	Parameters

	
	url (tuple) – The url, parsed as returned by absurl above.

	cache (Mapping) – An optional cache. If the URL can be found in the
cache, return the cache contents.

	encoding (str) – Provide an encoding for local URLs to override
encoding detection, if desired. Defaults to None.

	Returns

	The resource text of the URL, and the content type.

	Return type

	tuple

	
prance.util.url.split_url_reference(base_url, reference)

	Return a normalized, parsed URL and object path.

The reference string is a JSON reference, i.e. a URL with a fragment that
contains an object path into the referenced resource.

The base URL is used as a reference point for relative references.

	Parameters

	
	base_url (mixed) – A parsed URL.

	reference (str) – A JSON reference string.

	Returns

	The parsed absolute URL of the reference and the object path.

	
prance.util.url.urlresource(url)

	Return the resource part of a parsed URL.

The resource part is defined as the part without query, parameters or
fragment. Just the scheme, netloc and path remains.

	Parameters

	url (tuple) – A parsed URL

	Returns

	The resource part of the URL

	Return type

	str

prance.util.exceptions

This submodule contains helpers for exception handling.

Functions

	
prance.util.exceptions.raise_from(klass, from_value, extra_message=None)

	

prance.util.path

This module contains code for accessing values in nested data structures.

Functions

	
prance.util.path.path_get(obj, path, defaultvalue=None, path_of_obj=())

	Retrieve the value from obj indicated by path.

Like dict.get(), except:

	Any Mapping or Sequence is supported.

	Path is itself a Sequence; the first part is applied to the passed
object, the second part to the value returned from this operation, and
so forth recursively.

	Parameters

	
	obj (mixed) – The Sequence or Mapping from which to retrieve values.

	path (Sequence) – A Sequence of zero or more key/index elements.

	defaultvalue (mixed) – If the value at the path does not exist and this
parameter is not None, it is returned. Otherwise an error is raised.

	
prance.util.path.path_set(obj, path, value, **options)

	Set the value in obj indicated by path.

Setter anologous to path_get() above.

As setting values is a write operation, this function optionally creates
intermediate objects to ensure all elements of path can be dereferenced.

	Parameters

	
	obj (mixed) – The Sequence or Mapping from which to retrieve values.

	path (Sequence) – A Sequence of zero or more key/index elements.

	value (mixed) – The value to set.

	create (bool) – [optional] Flag indicating whether to create
intermediate values or not. Defaults to False.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 prance	

 	
 	
 prance.convert	

 	
 	
 prance.mixins	

 	
 	
 prance.util.exceptions	

 	
 	
 prance.util.formats	

 	
 	
 prance.util.fs	

 	
 	
 prance.util.iterators	

 	
 	
 prance.util.path	

 	
 	
 prance.util.resolver	

 	
 	
 prance.util.url	

Index

 A
 | B
 | C
 | D
 | F
 | I
 | J
 | M
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Y

A

 	
 	abspath() (in module prance.util.fs)

 	
 	absurl() (in module prance.util.url)

B

 	
 	BACKENDS (prance.BaseParser attribute)

 	(prance.ResolvingParser attribute)

 	
 	BaseParser (class in prance)

C

 	
 	CacheSpecsMixin (class in prance.mixins)

 	canonical_filename() (in module prance.util.fs)

 	ConversionError

 	
 	convert_spec() (in module prance.convert)

 	convert_str() (in module prance.convert)

 	convert_url() (in module prance.convert)

D

 	
 	default_reclimit_handler() (in module prance.util.resolver)

 	
 	detect_encoding() (in module prance.util.fs)

F

 	
 	fetch_url() (in module prance.util.url)

 	fetch_url_text() (in module prance.util.url)

 	
 	format_info() (in module prance.util.formats)

 	from_posix() (in module prance.util.fs)

I

 	
 	is_pathname_valid() (in module prance.util.fs)

 	
 	item_iterator() (in module prance.util.iterators)

J

 	
 	json() (prance.BaseParser method)

 	(prance.mixins.JSONMixin method)

 	(prance.ResolvingParser method)

 	
 	JSONMixin (class in prance.mixins)

M

 	
 	
 module

 	prance

 	prance.convert

 	prance.mixins

 	prance.util.exceptions

 	prance.util.formats

 	prance.util.fs

 	prance.util.iterators

 	prance.util.path

 	prance.util.resolver

 	prance.util.url

P

 	
 	parse() (prance.BaseParser method)

 	(prance.ResolvingParser method)

 	parse_spec() (in module prance.util.formats)

 	parse_spec_details() (in module prance.util.formats)

 	ParseError

 	path_get() (in module prance.util.path)

 	path_set() (in module prance.util.path)

 	
 prance

 	module

 	
 prance.convert

 	module

 	
 prance.mixins

 	module

 	
 	
 prance.util.exceptions

 	module

 	
 prance.util.formats

 	module

 	
 prance.util.fs

 	module

 	
 prance.util.iterators

 	module

 	
 prance.util.path

 	module

 	
 prance.util.resolver

 	module

 	
 prance.util.url

 	module

R

 	
 	raise_from() (in module prance.util.exceptions)

 	read_file() (in module prance.util.fs)

 	reference_iterator() (in module prance.util.iterators)

 	
 	RefResolver (class in prance.util.resolver)

 	ResolutionError

 	resolve_references() (prance.util.resolver.RefResolver method)

 	ResolvingParser (class in prance)

S

 	
 	serialize_spec() (in module prance.util.formats)

 	SPEC_VERSION_2_PREFIX (prance.BaseParser attribute)

 	(prance.ResolvingParser attribute)

 	SPEC_VERSION_3_PREFIX (prance.BaseParser attribute)

 	(prance.ResolvingParser attribute)

 	
 	specs_updated() (prance.BaseParser method)

 	(prance.mixins.CacheSpecsMixin method)

 	(prance.mixins.JSONMixin method)

 	(prance.mixins.YAMLMixin method)

 	(prance.ResolvingParser method)

 	split_url_reference() (in module prance.util.url)

T

 	
 	to_posix() (in module prance.util.fs)

U

 	
 	urlresource() (in module prance.util.url)

V

 	
 	ValidationError

W

 	
 	with_traceback() (prance.convert.ConversionError method)

 	(prance.util.formats.ParseError method)

 	(prance.util.url.ResolutionError method)

 	(prance.ValidationError method)

 	
 	write_file() (in module prance.util.fs)

Y

 	
 	yaml() (prance.BaseParser method)

 	(prance.mixins.YAMLMixin method)

 	(prance.ResolvingParser method)

 	
 	YAMLMixin (class in prance.mixins)

 _static/minus.png

_static/plus.png

_static/file.png

_images/prance_logo_256.png

nav.xhtml

 Table of Contents

 		
 Documentation of prance 0.22.11.4.1.dev3+g225635a

 		
 prance

 		
 Exceptions

 		
 ValidationError

 		
 Classes

 		
 BaseParser

 		
 ResolvingParser

 		
 prance.mixins

 		
 Classes

 		
 CacheSpecsMixin

 		
 JSONMixin

 		
 YAMLMixin

 		
 prance.convert

 		
 Exceptions

 		
 ConversionError

 		
 Functions

 		
 convert_spec()

 		
 convert_str()

 		
 convert_url()

 		
 prance.util.formats

 		
 Exceptions

 		
 ParseError

 		
 Functions

 		
 format_info()

 		
 parse_spec()

 		
 parse_spec_details()

 		
 serialize_spec()

 		
 prance.util.fs

 		
 Functions

 		
 abspath()

 		
 canonical_filename()

 		
 detect_encoding()

 		
 from_posix()

 		
 is_pathname_valid()

 		
 read_file()

 		
 to_posix()

 		
 write_file()

 		
 prance.util.iterators

 		
 Functions

 		
 item_iterator()

 		
 reference_iterator()

 		
 prance.util.resolver

 		
 Classes

 		
 RefResolver

 		
 Functions

 		
 default_reclimit_handler()

 		
 prance.util.url

 		
 Exceptions

 		
 ResolutionError

 		
 Functions

 		
 absurl()

 		
 fetch_url()

 		
 fetch_url_text()

 		
 split_url_reference()

 		
 urlresource()

 		
 prance.util.exceptions

 		
 Functions

 		
 raise_from()

 		
 prance.util.path

 		
 Functions

 		
 path_get()

 		
 path_set()

